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Effect of Interfacial Chemical Bonding on the

Strength of Adhesion of Glass-Polybutadierke Joints

Summary

A new example of a positive effect of interfacial chemical

bonding on the strength of adhesive bonds is reported. The

chemical bond was formed between a ~-bromomethylphenylpoly-

sioxane coated glass slide and a liquid dicarboxyterminated

polybutadiene which was subsequently bonded to an elastomeric

polybutadiene by crosslinking with dicumylperoxide . Peel tests

at 180° led to cohesive fa ilur e in the elastomer layer for two

different proportions of 2-bromomethyipherlyl groups on the

glass slides , whereas uncoated slides and slides coated with

an inert polysiloxane layer , p-tolylpolysiloxane, showed inter—

facial failure. Further confirmation of interfacial bonding

was obtained from SEM studies. When peel tests resulted in

cohesive failure it was found possible to distinguish between

different degrees of iriterfacial bonding by the different

times required for failure at the interface on swelling the

elastomer layer with pentane.
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Introduction

The importance of interfacial bonding on the strength of

an adhesive joint is still a subject of controversy (1-3)

Some investigators believe that covalent bonding at an inter-

face is not necessary to form a strong joint. Others argue

that adhesion is improved by forming chemical bonds between

adherends. Ahagon and Gent (4) have shown that when the

presence of chemical bonds at an interface can be inferred from

the method of preparation of the joint, then a corresponding

increase in the work of adhesion is observed. In their work

bonding to the substrate, a glass surface treated with varying

amounts of vinyltriethoxysilane, and crosslinking of the ad-

hes ive, polybutadiene, were carried out simultaneously during

a peroxide cure of the adhesive . It was assumed that the

bonding to vinyl groups on the substrate was quantitative or

at least proportional to the number of groups present. No

attempt to measure the number of vinyl groups was made, although

earl ier work by Hsu and Gent had shown that the proposed reac-

tions should occur (5).

We have now developed a second system that shows a sig-

nificant effect of interfacial chemical bonding on adhesive

•trength and that also allows us to vary the number of inter-

facial chemical bonds and the degree of crosslinking of the 
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elastomer in separate steps. In designing this system we have

used well-established chemistry developed for use in solid phase

pepti de synthes es wi th glas s beads as the station ary phas e (6 ,7)

The following sequence of reactions is first carried out on a

clean gla ss sli de :

7Si-OH Cl

+ Cl-Si-

— Si-OH Cl

Glass surfa ce X = Br or H

~~~~~—CHz X

ç ci 1~~~o

( 
~~~~~. 

—

~~~

/
S i-O-Si- —CH2 X

0
\ I
7
S i-O-S i- ~6~

..CHZ X

~~~~~—CH Z X

~~~~~~~~ ~~~~~~~~~ -. 
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Thus a har d f ilm consis ting of a thr ee dinens ion al func tion-

al ized poly si lox ane network is form ed on the surfa ce of the

glass slides. This system is particularly attractive because

it has been shown that the linkage between the glass slide and

the bonded organic layer is hydrolytical ly stable (6 ,7) . These

prepared slides with varying amounts of -CH~ and -CH2 Br groups

are then treated with a liquid polybutadiene terminated at

both ends with carboxylic acid groups and finally the liquid

polybutadiene is bonded to an elastomeric polybutadiene over-

layer during a curing reaction. The strengths of adhesion of

these model joints were measured in 1800 peel tests and cor-

related with debonding times in pentane and rnicrographs taken

with a scanning electron microscope .

Experimental

Materials. p-Tolyltrichlorosilane (CH3_ .©—SiC13 ) wa s pre-

pare d accordin g to the method of Chv alovsky and Bazant ( 8)

p-Bromomethylphenyltrichlorosilane (BrCH~—~~~~ -—SiCl3 ) was

made by Grohmann ’s procedure (6) . The liquid dicarboxyterminated

polybutadiene was B. F. Goodrich ’s Hycar CTB (2000X156) , 
~~~~ 

4130,

functional ity 1 .9 , cis/trans/vinyl ( % )  : 20.5/54.9/24.6. The
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elastomeric polybutadiene was Firestone ’s Diene 35 , an an ioni c

poly butadiene of M~ ‘-‘150 ,000 and cis/trans/vinyl ( % ) : 36/54/10.

Dicumyl peroxi de (recry stallized , Hercules , inc.) was used as

a curing agent. Reagent grade benzene (Mallinckrodt Chemical

Works) was dried over lithium aluminum hydride and distilled.

Other solvents were reagent grade and were used as received.

The glass slides were cleaned by standing in freshly prepared

chromic acid solu tion for sev eral days and then rin sing several

times with distilled water followed by drying in a vacuum oven

at 120°C for six days .

Polysiloxane Coating of Glass Slides. The glass slides were

treated for 4 days at room temperature with one of three dif-

ferent silane solutions in dry benzene : A , lOg of p—brorno-

methy1pheny1trich1oros~.lane in ZSOml of dry benzene ; B, lOg

of p-tolyltrichlorosilane in Z5Oml of dry benzene; or C, 5g

of p-bromornethylphenyltrichlorosilane and 5g of p-tolyltrichloro-

silane in 250m1 of dry benzene . They were removed and placed in

Soxh iet ex tractor s and washe d wi th ref lux ing dry benzene for

24 hours in order to remove any of the silane compounds not

chemically bonded to the slides . The glass slides were then
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placed in a solution of benzene, ethanol and water ( 50/45/5

by volume) for four hours to hydrolize the remaining Si-Cl

bonds and then heated in a vacuum oven at 115°C for 24 hours

to polym er ize the silane compoun ds on the surface of the glass.

Reaction With Liquid Polybutadierie. Three clean glass slides

which had not been treated with any of the silane solutions ,

three slides treated with A , three slides treated with B, and

three slides treated with C were suspended in a reaction

kett n accord with the usual procedure for coupling amino

chioromethylated supports a solution of 30g of di-

carboxyterminated liquid polybutadiene in 750m1 of ethyl acetate

and Sml tr iethy lamine were added (9) . The kettle was heated

to 60-70°C. After four days, the solution was removed and

the glass slides were washed twice with ethyl acetate and once

with rnethylene chloride in order to remove all of the liquid

rubber which was not chemically bonded to the glass slides.

The coa ted glass sli des were then air dried. Two of each

type of slide wer e use d for adhesion testing and the third

was examined by scanning electron microscopy.

Application of Elastomer Layer. Dicumyl peroxide (0.1% )

was mixed with the elastomeric polybutadiene on an open mill.

Before bonding the elastomer was pressed into a thin layer

on a sheet of finely-woven cotton cloth. The cloth-backed
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layer wa s then pre ssed again st the pr epare d gla ss sli de for

2.5 hrs. at 150°C in a press to cure the elastomer and bond

the two polybutadienes . The thickness of the elastomer inter-

layer in the resulting cloth—elastomer-glass sandwich was

0.7mm . Peeling experiments were carried out on strips of

cloth-backed elastorner layer after trimming them to a uniform

width on the glass of 2 cm.

Measurement of Work of Adhesion, W. The cloth-backed elastomer

layer was peeled off a short distance, bent back through 180°,

and then stripped off at constant rate. Work of adhesion W

per unit area of interface was calculated from the time—average

of the peel force P per unit width of the detaching layer (4)

W = ZP

Scanning Electron Microscopy . Slides were gold coated and

examined wi th  a JSM-V3 Scanning Electron Microscope .

Results and Discussion

The results of the 180° peel tes ts of the bonds prep ared

as described above are given in Table I. As would be expected

if chemical bonding plays a role in improving the strength of

adhesion the p-tolylpolysiloxane coated slides and the clean

glass slides led to low work of adhesion W since chemical

-a— ----—
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bonding with the dicarboxyterminated polybutadiene is not

expected in either case. The slides with the p-tolylpoly-

siloxane coating gave a lower W than the uncoated slides. This

is consistent  with the known release agent character is t ics  of

silane compounds and indicates that there is some intrins ic

a t t r a c t i o n  between clean glass surfaces and polybutadiene that

is reduced by the siloxane coating . Similar results were ob-

tained by Ahagon and Gent (4) ; higher values of W for clean

glass compared to methyltriethoxysilane treated glass were

found and can be accounted for in the same way . Wong has

also noted a strong attraction between polybutadiene and

clean glass (10)

The existence of strong attraction between the dicarboxy—

terminated polybutadiene and clean glass was confirmed by the

scanning electron microscope study . (See Figure 1.) . Un-

coated glass s lides were covere d by a sign ifican tly larger

amount of debris , pres umably rubber , after treatment with the

dicarboxyterminated polybutadiene than were slides coated

with p-tolylpolysiloxane . This attraction could be of the

s ame nature as that noted by Ahagori and Wong but covalent

bonding might also have occurred under the reaction conditions used.

.4
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In contrast,when some degree of interfacial chemical

bonding was expected , as with the 50/50 p-bromomethylphenyl-

polysiloxanc/p-tolylpolysiloxane coated slides and with

p-bromomethylphenylpolysiloxane coated slides , a much larger

value of W that resulted in cohesive failure ~~ the poiy-

butadiene layer was observed. As shown in Figure 2 the

scanning electronmicrographs of the siloxane coated slides

before and after treatment with the dicarboxyterminated

rubber also revealed a definite coating on the glas . . Micro-

graphs of the rubber treated slides showed evidence of rubber

particles in addition .

A further difference between the slides where chemical

bonding is expected and those where it is not was found in

the time required for failure of the adhesive bond by swelling

in pen tane of the polybutadiene layer (See Table i) . When

chemical bonding could not occur the bond failed in a few

minutes. When chemical bonding was possible much longer

times were required. The rubber-glass bond on the slide

coated with the 50/50 p-broTnornethylphenylpolysiloxane/p-tolyl-

polysiloxane failed after several hours in pentane . The

corresponding bond on the glass slide coated with p-bromo-

methyi phenylsiloxane did not fail even after being submerged



9

in pentane for three days . This indicates, as would be ex-

pected , that there is a higher density of bonds in the case

of the glass slides coated with the p-bromomethylphenylpoly-~

ailoxane than in the case of those coated with the 50/50

p-bromomethylphenylpolys iloxane/p-tolylpo].ysiloxane. Time to

debond the elastomer from tht. substrate by swelling in pentane

seems to be a very sensitive criterion for determining the

existence and re la t ive  densi ty of chemical bonds .

Conclus ion

A new example of a positive effect of interfacial chemical

bonding on the strength of adhesive bonds is reported. The

chemical bond was formed between a p-brornomethylphenylpoly-

siloxane coated glass slide and a l iquid dicarboxyterminated

polybutadieA~e which was subsequently bonded to an elastomeric

polybutadiene by crosslinking with dicuxnyl peroxide . Peel tests

at 180° led to cohesive f ailur e in the elastome r lay er for two

different contents of p-bromomethylphenyl groups. The two

levels of functionalization could be distinguished by the

time necessary for failure of the adhesive bond by swelling in

pentane. Peel tests of similarly treated uncoated slides 

- - - .4
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and p-tolylpolysiloxane coa ted slides led to interfacial

failure. Further confirmation of the existence of the coat-

ings was obtained from scanning 9lectrorlrnicroscope studies.
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Tabl e I

E f f e c t  of ~ -BromoTneth ylphenylpolys iloxane and 2-Tolylpolysiloxane
Coatings on Work of Adhesion Between Dicarboxyterminated

Polybutadiene and Glass and on Time for Bond Failure in Pentane

% of silane in Coating Solution
Time for Bond

—Si—(~>—CH3 -Si— (~)—CH2 Br W (J/rnz)a Failure in Pentarie(hrs)

0 0 34(I) —0.08

100 0 20(x) —0.08

50 50 450(C) —3

0 100 470(C) > 72

aDetermined in a 180° peel test with 0.5 cm per mm crosshead speed
and 0.1% dicurnyl peroxide cure of the polybutadiene . I = inter-
facial  fa i lure . C = cohesive fa i lure  of the elastomer. 
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